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Numerical simulation has become an indispensable tool for the
interpretation of pulse EPR experiments. In this work it is shown
how automatic orientation selection, grouping of operator factors,
and direct selection and elimination of coherences can be used
to improve the efficiency of time-domain simulations of one- and
two-dimensional electron spin echo envelope modulation (ESEEM)
spectra. The program allows for the computation of magnetic inter-
actions of any symmetry and can be used to simulate spin systems
with an arbitrary number of nuclei with any spin quantum num-
ber. Experimental restrictions due to finite microwave pulse lengths
are addressed and the enhancement of forbidden coherences by
microwave pulse matching is illustrated. A comparison of simu-
lated and experimental HYSCORE (hyperfine sublevel correlation)
spectra of ordered and disordered systems with varying complexity
shows good qualitative agreement. C© 2002 Elsevier Science (USA)
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INTRODUCTION

Electron spin echo envelope modulation (ESEEM) tech-
niques are now used extensively to investigate paramagnetic
systems (1–4). The standard ESEEM methods are the one-
dimensional two-pulse and three-pulse ESEEM (1–3) and the
two-dimensional HYSCORE (hyperfine sublevel correlation)
experiments (5). One of the main bottlenecks in the inter-
pretation of ESEEM data is still the lack of fast and general
simulation programs. Direct determination of the parameters
of the spin Hamiltonian from the line positions (frequencies)
and intensities in experimental spectra is possible only for
the simplest spin systems. In rare situations the parameters
can be determined using nonlinear least-squares fitting. In
most cases, however, the spin system is too complex so that a
fully automatic determination of the numerous parameters is
impossible due to the immense computational costs and ambigu-
ous solutions. This is particularly true for disordered systems
and for sophisticated multipulse EPR experiments. Stepwise
correction of a set of trial parameters based on a repeated visual
comparison of simulated and experimental spectra may then
lead to the solution. Efficient and reliable spectral simulation
software is a necessary prerequisite for the success of such a
procedure.
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Several approaches are feasible to address this problem. The
echo amplitude in an ESEEM experiment may be evaluated
using one of the commercial software packages or programs
with implemented matrix computations (MATLAB (6), IDL (7),
Mathematica (8)). The proven reliability and the complete doc-
umentations available make this approach attractive (9). Due to
the inherent interpretative nature of these interactive programs a
simple implementation of the modulation formulae often leads
to a rather inefficient solution. An alternative procedure requires
the additional effort of implementing optimized extension rou-
tines (so-called mex-files in the case of MATLAB), but once this
is done the effort is rewarded by very satisfactory results.

In the past years some effort has been invested into the devel-
opment of stand-alone programs for the simulation of ESEEM
spectra. Although these programs are in general very efficient,
they are often specialized to some particular classes of prob-
lems. A large number of simulations concentrating mainly
on one-dimensional ESEEM techniques have been described
(10–14). The version of the general spin Hamiltonian program
MAGRES (15) that allows for orientation selection and has been
extended for HYSCORE simulations uses only ideal microwave
(mw) pulses. The approach of Benetis and Sornes (16) combines
known theoretical tools to derive formulae for the eigenvalues
and eigenvectors of the spin Hamiltonian to compute one- and
two-dimensional ESEEM spectra quickly and allows for nuclei
with I > 1/2. However, the simulation program assumes the nu-
clear quadrupole interaction to be much smaller than the hyper-
fine and the nuclear Zeeman interactions and includes only the
secular part of the nuclear quadrupole interaction. The program
TRYSCORE (17) makes use of an efficient frequency-domain
simulation of HYSCORE spectra (time-domain data are also
generated using the inverse Fourier transform) and also treats
nonideal mw pulses. It is however restricted to spin systems
with one or two 14N or 1H nuclei with axial hyperfine interac-
tions and allows only the application of user-specified sets of
orientations. Pöppl et al. (18–20) treat systems with I > 1/2 nu-
clei with an isotropic or axial g matrix. They include the nuclear
quadrupole interaction using first-order perturbation theory and
no orientation selection is implemented.

On the other hand there is a large tradition in the simula-
tion of multipulse experiments in the field of NMR (21–23) and
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specialized noncommercial freeware originally designed for the
simulations of NMR spectra can in principle also be applied
to problems in EPR. As an example, the object-oriented C++
software package GAMMA (24) contains most of the function-
ality required for the simulation of ESEEM spectra (Hamilton
operators, pulse and time propagators, computation of expec-
tation values, etc.). Although GAMMA is still mainly used for
the simulation of NMR spectra, it has recently been successfully
applied in the context of EPR spectroscopy (25–28).

In this paper a general strategy for the numerical simulation
of ESEEM experiments in the time domain is given and it is
shown how the computational efficiency can be improved. In
particular we attempted to collect some of the most important
features of existing approaches, extend them to larger spin sys-
tems with a varying number of quadrupolar nuclei, include an
accurate automatic orientation selection scheme, and allow for
the most general form of the various interactions, as well as avoid
the use of approximate analytical expressions. Special attention
is paid to the simulation of HYSCORE spectra. Spin simula-
tions were performed using both GAMMA and MATLAB in
order to compare the results and the performance of the differ-
ent software packages. Comparisons between experimental and
simulated HYSCORE spectra are made for systems with sig-
nificant g anisotropy and nuclei with I > 1/2. Furthermore, the
effect of the nonideality of the mw pulses on the HYSCORE
spectra is discussed.

SIMULATION OF ESEEM EXPERIMENTS
IN THE TIME DOMAIN

General Concepts

The echo intensity in an ESEEM experiment can be de-
scribed using the density operator formalism (1, 2, 21, 29, 30).
In the following we will focus on the HYSCORE experiment,
π/2–τ–π/2–t1–π–t2–π/2–τ–echo (Fig. 1a), but all findings can
be generalized to other ESEEM experiments. Denoting the pulse

Rτ RτRt1
Rt2

Ry π 2⁄,

Ry π,
Ry π 2⁄,Ry π 2⁄,

σ0 σ1 D

τ τt1 t2
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π
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FIG. 1. Pulse sequences of the standard and matched HYSCORE experi-
ments. (a) Standard HYSCORE and (b) matched HYSCORE. For the definition

of the symbols see the text. The periods τ, t1, and t2 are free precession time
intervals between the pulses.
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propagators for a π/2 and a π pulse by Rπ/2 and Rπ , all rep-
resenting rotations about the y axis of the rotating frame, and
the time evolution operators by Rτ , Rt1 , and Rt2 , the echo am-
plitude of the HYSCORE experiment is given by

E(τ, t1, t2) = 〈Sx 〉(τ, t1, t2)

= Tr
{

Rτ Rπ/2 Rt2 Rπ Rt1 Rπ/2 Rτ Rπ/2σ0 R−1
π/2 R−1

τ

× R−1
π/2 R−1

t1 R−1
π R−1

t2 R−1
π/2 R−1

τ Sx
}
, [1]

where σ0 is the density operator at thermal equilibrium and Sx

is the detection operator.
The numerical simulation of the HYSCORE experiment in

the time domain consists of an efficient evaluation of E(τ, t1, t2)
followed by the usual steps of data processing (baseline correc-
tion, filtration, and Fourier transformation).

When discussing the computational efficiency one should dis-
tinguish between the efficiency of the algorithm and the effi-
ciency of the implementation. The latter issue is difficult to treat
in a general way and, moreover, the programming languages
used are developing and improving continuously. In this pa-
per, we will mainly focus on how to improve the algorithms,
but it is clear that the algorithms chosen should always be im-
plemented as efficiently as possible. We made use of both the
GAMMA and the MATLAB program. The object-oriented C++
software package GAMMA (24) contains most of the function-
ality needed for the simulations. On the other hand, MATLAB
(6) allows the use of interactive user interfaces and MATLAB
programs are generally very reliable and easily readable. The
computational speed of user-defined functions can be further
improved by implementing optimized extension routines writ-
ten in C or FORTRAN.

Evaluation of the Echo Amplitude

The speed limiting step in the evaluation of the echo amplitude
of an ESEEM experiment for a single observer position is the
calculation and application of the propagators. It is clear that
an algorithm in which Eq. [1] is straightforwardly implemented
is not very efficient. The time needed for the calculation of the
echo intensity can however be minimized by taking into account
the following points.

First of all, the free evolution periods can be implemented in
the eigenbasis of the spin Hamiltonian. By default, the matrix
representation of an operator is set up in the Zeeman basis of the
electron and nuclear spins. Since the matrix representation of the
spin Hamiltonian in this basis contains off-diagonal elements,
most of the propagators are represented by full matrices. The
computational cost of the evaluation of a single time evolution
step σt+�t = Rσt R−1 is therefore proportional to n3, where n is
the number of states of the spin system. As described already
in Ref. (31) in the eigenbasis U0 of the static Hamiltonian H0
all the propagators R = diag(e , . . . , e ) are diagonal.
Since these operations consist of only multiplying the rows and
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columns of the matrix representation of the density operator by
scalars, the time cost of the evaluation of a single time evolution
step reduces to n2,

σ
U0
t+�t = diag(eiω j �t )σU0

t diag(e−iω j �t ) [2]

with σ
U0
t = U−1σtU .

Second, the repetitive evaluation of expectation values of ob-
servables in the eigenbasis of the Hamiltonian can be further
restricted to density operator components (coherences) and de-
tection operator elements of sufficiently high amplitude. The
expectation value of an effective detection operator D evaluated
in the eigenbasis U0 of the Hamiltonian as a function of the time
is given by

〈D〉(t) =
∑

jk

DU0
jk σ

U0
k j e−i(ωk−ω j )t

. [3]

Since the exponential factor e−i(ωk−ω j )t
has a constant unit

modulus the summation must include only terms with an abso-
lute value of DU0

jk σ
U0
k j above a certain threshold. This drastically

reduces the number of matrix elements to be taken into account
to the electron single-quantum coherences with large amplitude.

A significant further speedup can be obtained in some cases by
a careful grouping of the remaining full matrix multiplications
(32). For the HYSCORE experiment, for example, Eq. [1] can
be rearranged to

E(τ, t1, t2) = 〈Sx 〉(τ, t1, t2)

= Tr
{

RM Rt1σ1 R−1
t1 R−1

M R−1
t2 DRt2

}
[4]

with the mixing propagator RM = Rπ , the effective starting den-
sity operator

σ1 = Rπ/2 Rτ Rπ/2σ0 R−1
π/2 R−1

τ R−1
π/2, [5]

and the effective detection operator (for notation see Fig. 1)

D = R−1
π/2 R−1

τ Sx Rτ Rπ/2. [6]

The parts independent of t1 and t2 can be precalculated sav-
ing further computer time. This procedure cannot be applied
for experiments using two evolution intervals of simultaneously
incremented lengths separated by some pulses and free evolu-
tion periods. Examples of such experiments are two-dimensional
three-pulse ESEEM (33), spin-locked ESEEM (34), one- and
two-dimensional sum combination-peak experiments (3, 28,
35), and the five-pulse ESEEM experiment introduced by Pöppl
et al. (36).

Finally, elimination of undesired density operator components
such as transverse electron magnetization during the evolution

time in experiments using nuclear coherences (coherence selec-
tion) is possible simply by explicit weighting of coherences; a
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repetitive evaluation implementing phase cycles is not required.
Suppression of electron coherences, for example, is realized by
zeroing all elements of the density matrix which connect states
in the spin system with different mS values (32).

The general structure of simulations performed in the time
domain is illustrated by the GAMMA and MATLAB code seg-
ments displayed in Table 1. These programs implement the eval-
uation of the echo amplitude based on Eq. [4].

Orientational Averaging

The majority of the samples studied by EPR are frozen so-
lutions or powders. Such samples contain randomly oriented
paramagnetic species and the observed spectrum is the sum of
the spectra of the different subensembles. The total simulation
time will be strongly affected by the efficiency of the powder
averaging. The first step in the design of an ESEEM simulation
procedure for a disordered system is the choice of the integra-
tion algorithm. The accuracy of various integration algorithms
has been tested (37) and they were found to have similar perfor-
mance, provided that there are no systematic errors influencing
the results, such as carrying out the integration in a coordinate
system other than the principal axes system of the g matrix. We
chose an algorithm which distributes a number of base points
along the latitudes of the unit sphere proportional to the length
of the latitude (sinusoidal projection). The speed and accuracy
of this simple and efficient integration method are reported to
be very satisfactory (37).

Since the anisotropy of the g matrix and the hyperfine inter-
actions often exceed the amplitude of the available mw field,
only a narrow window of the EPR spectrum can be excited si-
multaneously by the pulse sequence. This in turn corresponds to
a subset of species in a disordered system with coinciding ori-
entations. Numerical calculations however are often simplified
by the assumption of ideally nonselective pulses, i.e., pulses of
length zero and infinite strength, which excite the whole EPR
spectrum uniformly. This problem may be solved as follows:
(a) All orientations contributing to the EPR spectrum are con-
sidered, but only the g matrix and hyperfine interactions with a
magnitude at least comparable to the mw field strength are in-
cluded. (b) Assuming a Gaussian excitation profile to account for
both the frequency distribution of the nearly rectangular pulse
and the variation of the static B0 field strength over the sample
in the cavity and other imperfections, a weight depending on
the difference between the resonance frequency of a spin packet
and the applied mw frequency is assigned to each orientation.
(c) The actual simulation is executed only for orientations with
a weight above a certain preset cutoff value.

This procedure is a variant of the “orientation selection prin-
ciple,” introduced by Rist and Hyde (38–40) and used exten-
sively for the simulation of ENDOR spectra of disordered sys-
tems (41–45), which we adopted for HYSCORE simulations.

For most programs the orientations must be specified explicitly
(17), which may also be less accurate. Orientation selection
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TABLE 1
Code Fragments Illustrating the Use of GAMMA and MATLAB for the

Simulation of Two-Dimensional Echo Modulation

C++
S=−Iz(sys,0); // thermal equilibrium
S=evolve(S,Iy(sys,0),0.25); // 1st pulse
S=evolve(S,H,tau); // tau evolution
S=evolve(S,Iy(sys,0),0.25); // 2nd pulse
D=Ix(sys,0); // detection operator
D=evolve(D,H,−tau); // tau evolution backwards
D=evolve(D,Iy(sys,0),−0.25); // 4th pulse
for (j=0;j<m;j++){ // t1 loop
S1=evolve(S,Iy(sys,0),0.50); // 3rd (mixing) pulse
FID(S1,D,H,dt,m,x); // echo sequence
for(k=0;k<m;k++)spec(j,k)=x(k); // accumulation
S=evolve(S,H,dt); // t1 evolution step

};
MATLAB

R1=expm(−i*Sy*pi/2); % 90deg pulse
R2=expm(−i*Sy*pi); % 180deg pulse
Rt=expm(−i*2*pi*H*tau); % time evolution
R=expm(−i*2*pi*H*dt); % time increment
S=−Sz; % thermal equilibrium
S=R1*S*R1′; % 1st pulse
S=Rt*S*Rt′; % tau evolution
S=R1*S*R1′; % 2nd pulse
D=Sx; % detection operator
D=Rt′*D*Rt; % tau evolution backwards
D=R1′*D*R1; % 4th pulse
for j=1:m; % t1 loop
S1=R2*S*R2′; % 3rd (mixing) pulse
spec(j,:)=FID(S1,D,R,m); % echo sequence
S=Rt*S*Rt′; % t1 evolution step

end;
Note. H , Hamiltonian; S, density matrix; D

results in a substantial saving in computer time and is utilized
also in the case of real pulses, i.e., pulses with finite amplitude
and duration. Figure 2 shows the weights of the orientations in a
disordered system with a rhombic g matrix with principal values
1.8, 2.0, and 2.2. The orientations with an effective g value of
2.0 are selected assuming a Gaussian lineshape with a FWHH
of 235.5 MHz. The figure clearly illustrates that many of the ori-
entations can be left out for the calculation of ESEEM spectra
at this observer position.

Simulations with Real Pulses

For most ESEEM experiments, the pulses cannot be approx-
imated by ideal pulses. In fact, a number of experiments (e.g.,
matched ESEEM (26, 46–49)) benefit from the use of tailored
nonideal pulses. Consequently, the effect of the nonideality of
the pulses should be considered in the simulations (17, 50). The
time evolution during the extended mw irradiation periods (real
pulses) is computed in a frame rotating with the mw frequency
ization axis of the electron spin. In the
rices the effective mw field is no longer
, detection operator.

perpendicular to the static field. The components of the B1 field
parallel to the effective static field modulate the energy levels of
the system on a time scale which is much too short to be relevant
for the observation of the echo signal. Therefore only the projec-
tion of the B1 field onto the plane perpendicular to the effective
static field is considered in the calculations. The Hamiltonian
during a pulse in the rotating frame is given by (26)

H1 = H0 + ω1(Sx cos ϕ + Sy sin ϕ), [7]

where ω1 is the amplitude and ϕ is the phase of the applied mw
field.

In an actual experiment the durations and amplitudes of the
mw pulses are set by maximizing the echo amplitude in a two-
pulse echo experiment. The effective g value relevant at a given
frequency is in most cases not known. Moreover, due to the
anisotropy of the various interactions, a large number of orien-
tations with different properties contribute to the echo at the same

mw frequency, so that the exact value of the mw field strength is
also an unknown parameter. Misadjustment of the field strength
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FIG. 2. Weights of orientations in a disordered system with a rhombic g
matrix (gx = 1.8, gy = 2.0, and gz = 2.2). Orientations with an effective g
value of 2.0 are selected assuming a Gaussian EPR lineshape with a FWHH of
235.5 MHz. The grayscale indicates the weights of orientations; darker areas on
the surface of the unit sphere correspond to higher weights, and white areas are
ignored in the simulation.

leads to significant errors in the resulting pulse flip angles and
thereby to the appearance of strong artifacts, such as large diag-

onal peaks, in the simulated spectra like in an experiment with ratio is often overwhelming for nuclei with a small modulation

inaccurately calibrated mw pulses.
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FIG. 3. Microwave field strength calibration by simulating a two-pulse echo for an electron-59Co spin system with tπ/2 = 10 ns, tπ = 20 ns, τ = 100 ns;

depth parameter k, as, for example, for strongly coupled nuclei
gx = 2.324, gy = 2.324, and gz = 2.087; and ACo
x = 39 MHz, ACo

y = 39 MHz, A
the second pulse. The optimum field strength is found at about 25 MHz.
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A practical solution of this problem is to implement the ex-
perimental pulse calibration scheme by simulating a two-pulse
echo experiment, π/2–τ–π–τ–echo, applied to a disordered
system and determining the mw field strength corresponding
to the maximum echo amplitude. Such a simulation involves
only the electron spin and the most strongly coupled nuclei.
When using mw pulses of finite length the echo maximum no
longer appears at time τ after the second pulse, but is delayed
by about half the length of the first pulse, and the shape of
the echo is a complicated function of the spin Hamiltonian
parameters (1). It is therefore necessary to display the echo
amplitude as a function of the time t after the second pulse
in addition to the B1-field dependence. An example for this
procedure is shown in Fig. 3 for an S = 1/2, I = 7/2 (59Co)
system. The adjustment should always be done at a B0-field
value which corresponds to the experiment. In the example
the field strength for optimum echo amplitude is found to be
ω1/2π ≈ 25 MHz.

This procedure also allows one to treat enhanced electron-
nuclear coherence transfers through forbidden transitions using
matched mw pulses. The rather involved theory of microwave
pulse matching is developed in full detail in Refs. (26, 46–49).
It has been shown experimentally (47) that the use of matched
pulses in HYSCORE experiments (π/2–τ–matched–t1–π–t2–
matched–τ–echo, Fig. 1b) leads to a large increase in signal
intensity. The corresponding improvement in the signal-to-noise
Co
z = 236.7 MHz, and B0 = 332.4 mT. The time t is measured from the end of
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with a predominantly isotropic hyperfine interaction or weakly
dipolar-coupled nuclei.

Starting from electron polarization neither an ideal selective
nor an ideal nonselective pulse can generate nuclear coherence.
However, since nuclear coherence can be generated by a real
pulse of finite length, there exists an optimum mw field strength
for the generation of such coherence. The transfer is governed
by flip-flop terms proportional to the operator S+ I − + S− I + in
the rotating-frame Hamiltonian and is most efficient when the
mixing of the states connected by the flip-flop term is maximal;
i.e., the states are degenerate (1, 26, 46). For an S = 1/2, I = 1/2
system the strength of the matching field in the weak-coupling
case (|A| < 2|ωI |) (1) is given by

ωm
1 = 1

|ω+/2| cos η

√
ωαωβ

(
ω2+
4

− �2
S

)
, [8]

where ω+ = ωα + ωβ and η is the half angle between the quan-
tization axis of the nucleus in the two electron manifolds,
�S is the resonance offset frequency of the electron spin,
ωα,β =

√
(ωI ± A/2)2 + (B/2)2 are the basic nuclear frequen-

cies, and ωI is the nuclear Zeeman frequency.
In the strong-coupling case (|A| > 2|ωI |) (1) and assuming
that the isotropic part of the hyperfine interaction is much larger single-quantum (SQ) nuclear transition frequencies can be

than the anisotropic part, the mw field strength ωm

1 satisfying the

ν2 MHz[ ]ν2 MHz[ ]
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ν2 MHz[ ]ν2 MHz[ ] ν1 MHz[ ] ν 1 MHz[ ]
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FIG. 4. Standard and matched HYSCORE. (a, b) HYSCORE simulations of a system with one unpaired electron interacting with a strongly coupled nitrogen
nucleus, showing the SQ nuclear frequency region of the spectrum (simulation parameters, see text; an identical but arbitrary scaling of the amplitudes is used).

seen in the matched experiment in agreement with earlier
Standard HYSCORE (a). Nitrogen-matched HYSCORE (b). (c, d) HYSCORE s
coupled protons, showing the DQ nuclear frequency region (simulation parameter
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matching condition is given by (1, 47)

ωm
1 = 1

|ωI |

√(
A2

4
− ω2

I

)(
�2

S − ω2
I

)
. [9]

This condition is fulfilled by electron spins with offset �m
S de-

termined by

∣∣�m
S

∣∣ = |ωI |
√

1 + ω2
I(

A2/4 − ω2
I

) . [10]

The largest enhancement of forbidden transfers is obtained with
the maximum available mw field strength (1).

Figures 4a and 4b show simulated HYSCORE spectra of an
S = 1/2, I = 1 (14N) system with g = 2, the hyperfine principal
values AN

x = 51.96 MHz, AN
y = 42.1 MHz, AN

z = 43.64 MHz,
and the nuclear quadrupole principal values QN

x = −1.71
MHz, QN

y = 1.91 MHz, QN
z = −0.2 MHz for a standard

HYSCORE experiment (π/2–τ–π/2–t1–π–t2–π/2–τ–echo)
(a), and a HYSCORE experiment with matched pulses of length
72 ns and a mw field of ω1/2π = 31.25 MHz (b). Almost an
order of magnitude enhancement of the cross peaks involving
imulations of a system with one unpaired electron interacting with two weakly
s, see text). Standard HYSCORE (c). Proton-matched HYSCORE (d).
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experimental observations for nitrogen-matched HYSCORE of
a single crystal of bis(salicylaldoximato)Ni(II), Ni(sal)2 , doped
with Cu(sal)2 (nitrogen hyperfine and nuclear quadrupole data
are similar to the parameters used in the simulation) (47).

In the weak-coupling case (and assuming also �S � ωI ) the
condition of Eq. [8] simplifies to ωm

1 = |ωI | (47). During the
strong, almost on-resonant irradiation of the electron spins
the resonance frequency of the electron spins in the rotating
frame is approximately ω1, and due to hyperfine decoupling
that of the nuclear spins is essentially ωI . This results in a max-
imum rate of flip-flop transitions, i.e., in a maximum electron-
nuclear polarization transfer. Generation of nuclear coherence
also requires a change of the effective quantization axis of the
nuclear spins, again ensured by the hyperfine decoupling effect.
This change is maximal for complete decoupling: ω1 → ∞.
The matching field optimizes all forbidden processes which re-
quire nuclear spin flips. Matching in the weak-coupling case is
achieved experimentally by adjusting the mw field strength near
to the nuclear Zeeman frequency: ω1 ≈ |ωI | (47).

Figures 4c and 4d show the simulation of standard and
matched proton HYSCORE spectra of an S = 1/2, I1 = 1/2,

I2 = 1/2 system with g = 2, AH
x = 6.6 MHz, AH

y = −0.87 MHz,
AH

z = −5.97 MHz, and matched pulses of 72 ns and a mw field of
ω1/2π = 14.7 MHz. A significant enhancement of the peaks in
the double-quantum nuclear frequency (DQ) region of the spec-
trum is obtained. This finding is again corroborated by earlier
experimental observations for the proton HYSCORE signals of
Cu(sal)2 (47). A highly sensitive experiment which makes use of
matched pulses and is free of blind spots is SMART HYSCORE
(matched–t1–π–t2–matched–τ–π–τ–echo) (48, 49).

SIMULATION OF ESEEM EXPERIMENTS IN THE
FREQUENCY DOMAIN

The ESEEM spectrum is related to the time-domain echo
modulation signal through Fourier transformation. For a two-
dimensional experiment the spectrum can be expressed in the
eigenbasis U0 of the unperturbed Hamiltonian H0 as

E(τ, ω1, ω2) =
∑

j,k,l,m

(
PU0

M

)
jk

(
σ

U0
1

)
kl

(
PU0

M

)∗
ml

DU0
mj

× (Akl(ω1) − i Bkl(ω1))(Amj (ω2) − i Bmj (ω2)),

[11]

where Apq (ω) = A(ω − ωpq ) is the absorption and
Bpq (ω) = B(ω − ωpq ) is the dispersion lineshape at the
transition frequency ωpq . Several ESEEM simulation ap-
proaches (15, 17) start with the calculation of the ESEEM
frequencies. The spectrum is represented as a sum of δ functions
positioned at the points of a frequency lattice with the complex

amplitudes given in Eq. [11]. This spectrum is then convoluted
with the desired lineshape. As long as the dimension of the
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Hilbert space of the spin system is moderate, this simulation
algorithm is very efficient.

In this work, programs were developed for the simulation
of HYSCORE spectra in the time as well as in the frequency
domain. Although the results should be strictly identical
comparison of the spectra of disordered systems simulated with
the same spin Hamiltonian parameters in the time and frequency
domain show some minor differences. They are caused by the
fact that in the frequency-domain case the line positions are
restricted to points of a discrete grid so that the interference
of spectral features with nearly identical frequencies and
slightly different phases is represented with some distortions. In
contrast, in the time domain frequencies are not restricted by the
resolution of a finite grid consisting of at best a couple of hun-
dred points, and the interference effects of overlapping spectral
features are represented with high accuracy. Suitable numerical
interpolation procedures may improve the faithfulness of the
representation of spectra generated directly in the frequency
domain and also increase the speed of the computation. These
problems and possible remedies, as well as numerous other
aspects of simulations of ESEEM spectra in the frequency
domain, will be discussed in detail in Ref. (51).

A quick overview of all the possible frequencies in a
HYSCORE spectrum can be obtained if one simplifies the
above frequency-domain calculation by assigning a zero or
unit amplitude to each grid position (ωkl , ωmj ), and omitting
the final convolution step. All four quadrants of such a rep-
resentation contain identical information, as was recognized
earlier (52). Figure 5 shows the possible frequencies in
the HYSCORE spectrum of an S = 1/2, I = 1 system with
g = 2, AN

x = 3.2 MHz, AN
y = 2.4 MHz, AN

z = 2.7 MHz, and
(e2q Q)/h = 1.69 MHz, η = |(Qx − Qy)/Qz| = 1 with |Qx | <
|Qy | < |Qz| and with the quadrupole tensor rotated about the
y axis by β = 90◦ (second Euler angle). In the spectrum we
recognize 2 × 9 ridges, which correspond to the nine possible
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FIG. 5. Example of a fast simulation method giving all possible HYSCORE
peak positions for an S = 1/2, I = 1 system (simulation data, see text).
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combinations between the three nuclear frequencies of the α

and the β manifold (two SQ and one DQ frequency for each
mS manifold). The procedure outlined can substantially reduce
the time needed for the analysis of ESEEM spectra and may
be helpful to get a first guess on the magnetic parameters of
the system under investigation very rapidly (the computation
including 16200 orientations requires 35 s on a 300-MHz
SUN SPARC Ultra 10 computer). In contrast to earlier similar
procedures (17, 52, 53) our approach allows for the inclusion of
a variable number of quadrupolar nuclei and general (nonaxial)
tensors and interaction matrices. The final step, however, should
always be the full simulation of the ESEEM spectrum.

COMPARISON OF SIMULATED HYSCORE SPECTRA
WITH EXPERIMENTAL DATA

Materials and Methods

Oxygenated cobalt(II) [15N]tetraphenylporphyrin(pyridine)
((oxyCo)[15N]TPP(py)) was prepared as described earlier (54).
RbCl:O−

2 single crystals were obtained as in (55).
The HYSCORE spectra (measured at 15 K throughout) were

recorded on a Bruker ESP 380 spectrometer (mw frequency,
9.71 GHz) equipped with a liquid helium cryostat from Ox-
ford Inc. The magnetic field was measured with a Bruker
ER 035 M NMR Gaussmeter. A repetition rate of 1 kHz
was used. The experiments were carried out with the pulse
sequence π/2–τ–π/2–t1–π–t2–π/2–τ–echo, with pulse lengths
tπ/2 = 24 ns and tπ = 16 ns. For the HYSCORE spectrum of
(oxyCo)[15N)TPP(py) the time intervals t1 and t2 were varied
from 96 to 8272 ns in steps of 16 ns. Three τ values (96, 176,
and 344 ns) were used to remove the blind spots. The observer
position was B0 = 342.0 mT. For the HYSCORE spectrum of
RbCl:O−

2 the time intervals t1 and t2 were varied from 96 to
6160 ns in steps of 16 ns and the τ value was taken to be 96 ns.
The observer position was chosen to be close to the [110] axis
(B0 = 302.9 mT).

Data processing was done with MATLAB (6). The time-
domain data were baseline corrected with a third-order poly-
nomial, apodized with a Hamming window, and zero-filled.
After 2D Fourier transformation, the absolute-value spectra were
calculated. To eliminate blind spots, the spectra measured at dif-
ferent τ values were added together. The simulated spectra were
processed the same way.

Experiments versus Simulations

ESEEM techniques, especially three-pulse ESEEM and
HYSCORE, are used to investigate weakly coupled nitrogens
in metalloproteins and their model systems (4). Often, no sin-
gle crystals can be grown, so that the experiments have to be
done on frozen solutions. Figure 6a shows a HYSCORE spec-
trum of a frozen toluene solution of the heme model compound

(oxyCo)[15N)TPP(py) (54) taken at an observer position where
several orientations contribute to the HYSCORE spectrum. Be-
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FIG. 6. HYSCORE spectrum of (oxyCo)[15N]TPP(py) at B0 = 342.0 mT.
(a) Experimental spectrum. Arrows indicate the peaks assigned to the 15N nuclei
of the porphyrin ligand. (b) Corresponding simulated HYSCORE spectrum (14N
nucleus of the pyridine) assuming ideal pulses of zero length. (c) Simulation with
pulses of finite length, tπ/2 = 24 ns and tπ = 16 ns.

sides the signal arising from the interactions with the 15N nuclei
of the porphyrin ligand (arrows in Fig. 6a), a number of cross
peaks are observed which can be assigned to the interaction with
the 14N nucleus of the pyridine ligand.

Figure 6b shows the corresponding simulated HYSCORE
spectrum obtained using the following parameters:
gx = 2.002, gy = 1.9827, and gz = 2.0705; ACo

x = −53 MHz,
ACo

y = −21.4 MHz, and ACo
z = −22.7 MHz; AN

x = 3.4 MHz,
AN

y = 3.4 MHz, and AN
z = 3.7 MHz; (e2q Q)/h = 2.95 MHz,

η = 0.23, and β = 65◦, and assuming ideal pulses. The
interaction with the 15N nuclei of the porphyrin ligand is
not taken into account. A superposition of a total of 18,000
HYSCORE experiments with different orientations and electron
Zeeman frequency offsets was included in the final time-domain
simulation with 128 × 128 data points. The required computer

time was approximately 46 min using GAMMA and 20 min
using MATLAB on a SUN SPARC Ultra 10 computer with
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300 MHz clock frequency and 256 MB main memory. The
simulation reflects largely the features from the experimental
HYSCORE spectrum. Using the algorithm described in the
above-mentioned frequency-domain simulations an overview
of all the possible frequencies in the HYSCORE spectrum may
be obtained in less than 1 min on the same computer when
including only 1800 different orientations in the calculation.
Figure 6c shows the HYSCORE spectrum simulated with
identical spin system parameters but using finite length pulses
with tπ/2 = 24 ns and tπ = 16 ns. The similarity between the
two spectra of Figs. 6b and 6c also indicates that the use of
ideal pulses in the simulation is justified at frequencies smaller
than approximately 10 MHz.

Although the ESEEM techniques can in principle be used to
observe interactions with any nuclear spin I ≥ 1/2, experimen-
tal ESEEM spectra of I > 1 systems are scarce (56–60). Since
several relevant nuclei have a spin larger than 1(I = 3/2: 7Li,
9Be, 11B, 23Na, 33S, 35Cl, 37Cl, 39K, 61Ni, 63Cu, 65Cu, 79Br,
81Br, 87Rb; I = 5/2: 17O, 25Mg, 27Al, 55Mn, 47Ti, 85Rb, 127I;
I = 3: 10B; I = 7/2: 49Ti, 51V, 59Co), the lack of ESEEM data
on S = 1/2, I > 1, systems must be due to the complexity of
the experimental spectra. In Fig. 7a we show the experimental
single-crystal HYSCORE spectrum of RbCl : O−

2 taken at an ob-
server position close to the [110] axis (gz axis). The O−

2 defect
in RbCl has been studied extensively using continuous wave
ENDOR (55). O−

2 replaces a single Cl− ion in the crystal lattice
and interacts with six neighboring Rb nuclei. The largest hy-
perfine interaction (interaction 1) is caused by the four nearest
neighboring Rb ions in the (001) plane, whereas the interaction
of the two Rb nuclei along the [001] axis with the unpaired elec-
tron is weaker (interaction 2). Rubidium has two isotopes: 85Rb
(I = 5/2, natural abundance 72.17%) and 87Rb (I = 3/2, natu-
ral abundance 27.83%). The HYSCORE spectrum looks indeed
complicated as can be appreciated from Fig. 7a. Simulations us-
ing the 85Rb ENDOR data (55) revealed, however, that only the
interactions with the 85Rb nuclei are visible in the HYSCORE
spectra.

Figure 7b shows the simulated HYSCORE spectrum with
one of the four equatorial Rb nuclei (gx = 1.9836, gy = 1.9846,
and gz = 2.2947; Rb interaction 1: Ax ′ = 11.49 MHz, Ay′ = 6.52
MHz, Az′ = 6.3 MHz, � (Ax ′ , gx ) = 39.8◦; Qx ′′ = 0.33 MHz,
Qy′′ = −0.23 MHz, Qz′′ = −0.1 MHz, � (Qx ′′,gx ) = 78.7◦; (55)).
At the observer position, the hyperfine coupling A(gz) is 8.8
MHz. Since the 85Rb Zeeman frequency amounts only to 1.25
MHz at this magnetic field position, the strong-coupling case
(|A(gz)| > 2νRb) applies (1), which explains why the largest sig-
nal intensity is found in the (−, +) quadrant of the spectrum. As
shown in Fig. 7b, the cross peaks between the five basic frequen-
cies of the α and the β electron spin manifold, (−νSQ(i)

α, νSQ(i)
β)

and (−νSQ(i)
β, νSQ(i)

α), with i = 1 to 5, are approximately cen-
tered around (−4.4 MHz, 4.4 MHz) (A(gz)/2 = 4.4 MHz).
The fact that only 8 instead of 10 cross peaks are visible

α β
results from an accidental overlap of (−νSQ(3) , νSQ(3) ) and
(−νSQ(5)

β, νSQ(5)
α) as is indicated in Fig. 7b. Furthermore, cross
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FIG. 7. HYSCORE of RbCl:O−
2 . (a) Experimental spectrum of a RbCl:O−

2
single crystal at an observer position near the [110] axis (B0 = 302.9 mT). (b)
Simulation of the HYSCORE signals of the equatorial 85Rb interaction at this
observer position (parameters, see text). (c) Simulation of the HYSCORE signals
of the axial 85Rb interaction at this observer position (parameters, see text).

peaks between the DQ and SQ frequencies are observed in the
(−, +) quadrant of the HYSCORE spectrum.

Figure 7c shows the simulated HYSCORE spectrum for
the interaction with one of the axial Rb nuclei (Rb interac-
tion 2: Ax = −1.53 MHz, Ay = −1.16 MHz, Az = −1.63 MHz;
Qx = 0.09 MHz, Qy = 0.21 MHz, Qz = −0.3 MHz). In the case
of exact cancellation (|A| = 2νRb), the effective field experienced
by the nucleus in one of the two mS manifolds is approximately
zero. The ESEEM frequencies within this manifold are then
close to the two true nuclear quadrupole resonance frequen-
cies expected for an I = 5/2 nucleus. Interaction 2 is near the
cancellation condition (|Az| ≈ 2νRb), but the situation is com-
plicated by the fact that |3Qz| ≈ |Az/2| ≈ νRb, so that in the
β manifold one of the nuclear frequencies is close to zero. This

has a significant influence on the nuclear transition probabil-
ities, and combined with the fact that |Az/2| = 0.815 MHz is
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slightly smaller than νRb, this explains why the HYSCORE
features in Fig. 7c are not interpretable in a straightforward
way. However, the possibility of simulating the HYSCORE
spectra of complicated S = 1/2, I > 1 systems opens a way
to the understanding of the different signals observed in these
spectra.

CONCLUSION

In cases when no analytical formulae for the calculation of an
echo modulation exist, numerical simulation based on the den-
sity operator formalism is a valuable method for calculating one-
and two-dimensional ESEEM spectra. In this work it is shown
how both single crystals and disordered systems can be treated.
An attempt was made to address experimental imperfections
such as field inhomogeneities and finite mw power. Experimen-
tal and simulated spectra show acceptable qualitative agreement.
The number of spins included is limited only by the available
computer time and memory. Simulations in both the time and
the frequency domain represent efficient and complementary
approaches for the calculation of pulse EPR spectra. Moreover,
simulations make a theoretical study of complex features appear-
ing in HYSCORE spectra of S = 1/2, I > 1 systems feasible.

Requests for the programs described in this article are to be
addressed to the authors.
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